

Elementary trigonometric equations

Recall (directed arcs)

Recall (directed arcs)

Chasles relation for directed arc

Chasles relation for directed arc

Angle between two vectors

 \vec{u} and \vec{v} are two non zero vectors.

The directed angle between them is denoted by:

$$(\vec{u}; \vec{v})$$

$$(\vec{u}; \vec{v}) = (\vec{OB}; \vec{OC}) = mes \hat{BC}$$

Remark:

According to Chasles rule: $(\vec{u}; \vec{w}) + (\vec{w}; \vec{v}) = (\vec{u}; \vec{v})$

Properties

1
$$(\vec{u}; \vec{v}) = -(\vec{v}; \vec{u}) + 2k\pi$$

$$(\vec{u}; \vec{v}) + (\vec{v}; \vec{u}) = (\vec{u}; \vec{u})$$

= $0 + 2k\pi = 2k\pi$

2
$$(\vec{u}; -\vec{v}) = (\vec{u}; \vec{v}) + \pi + 2k\pi$$

 $(-\vec{u}; \vec{v}) = (\vec{u}; \vec{v}) + \pi + 2k\pi$

$$(\vec{u}; -\vec{v}) - (\vec{u}; \vec{v}) = (\vec{u}; -\vec{v}) + (\vec{v}; \vec{u})$$

= $(\vec{v}; \vec{u}) + (\vec{u}; -\vec{v})$
= $(\vec{v}; -\vec{v}) = \pi + 2k\pi$

Properties

3
$$(-\vec{u}; -\vec{v}) = (\vec{u}; \vec{v}) + 2k\pi$$

$$(-\vec{u}; -\vec{v}) = (\vec{u}; -\vec{v}) + \pi + 2k\pi$$

$$= (\vec{u}; \vec{v}) + \pi + \pi + 2k\pi = (\vec{u}; \vec{v}) + 2\pi + 2k\pi$$

$$= (\vec{u}; \vec{v}) + 2k'\pi$$

4
$$(a\vec{u}; a\vec{v}) = (\vec{u}; \vec{v}) + 2k\pi \; ; \; a \neq 0$$

 $(a\vec{u}; \vec{v}) = (\vec{u}; a\vec{v}) = (\vec{u}; \vec{v}) + 2k\pi \; ; \; a > 0$

ACADEMY

ABCD is a rectangle with center O such that $AB = \sqrt{3}$ and AD=1. Determine the measure of each of the following directed angles:

$$(\overrightarrow{AC}; \overrightarrow{AD}) = -\frac{\pi}{3}$$
 (2 π)

$$(\overrightarrow{BA}; \overrightarrow{BD}) =$$

$$(\overrightarrow{OA}; \overrightarrow{OB}) =$$

$$(\overrightarrow{OC}; \overrightarrow{AD}) =$$

$$\tan \widehat{CAD} = \frac{CD}{AD} = \frac{\sqrt{3}}{1} = \sqrt{3}$$

Be Smart ACADEMY

ABCD is a rectangle with center O such that $AB = \sqrt{3}$ and AD=1. Determine the measure of each of the following directed angles:

$$(\overrightarrow{AC}; \overrightarrow{AD}) = -\frac{\pi}{3}$$
 (2 π)

$$(\overrightarrow{BA}; \overrightarrow{BD}) = \frac{\pi}{6}$$
 (2 π)

$$(\overrightarrow{OA}; \overrightarrow{OB}) =$$

$$(\overrightarrow{OC}; \overrightarrow{AD}) =$$

$$\tan \widehat{ABD} = \frac{AD}{AB} = \frac{1}{\sqrt{3}}$$

Be Smart ACADEMY

ABCD is a rectangle with center O such that $AB = \sqrt{3}$ and AD=1. Determine the measure of each of the following directed angles:

$$(\overrightarrow{AC}; \overrightarrow{AD}) = -\frac{\pi}{3}$$
 (2 π)

$$(\overrightarrow{BA}; \overrightarrow{BD}) = \frac{\pi}{6}$$
 (2 π)

$$(\overrightarrow{OA}; \overrightarrow{OB}) = -\frac{2\pi}{3}$$
 (2 π)

$$(\overrightarrow{OC}; \overrightarrow{AD}) = (\frac{1}{2}\overrightarrow{AC}; \overrightarrow{AD}) = (\overrightarrow{AC}; \overrightarrow{AD}) = -\frac{\pi}{3}$$
 (2 π)

Polar coordinates

1) Determine the Cartesian equation of a point of polar coordinates r =

2 &
$$\theta = \frac{\pi}{4}$$
.

$$x = r\cos\theta = 2\cos\frac{\pi}{4} = 2 \times \frac{\sqrt{2}}{2} = \sqrt{2}$$

$$y = r\sin\theta = 2\sin\frac{\pi}{4} = 2 \times \frac{\sqrt{2}}{2} = \sqrt{2}$$

2) Determine the polar coordinates of a point of Cartesian coordinates

$$\left(-\frac{1}{2}; -\frac{\sqrt{3}}{2}\right).$$

$$r = \sqrt{x^2 + y^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$$

$$y = \sqrt{\frac{1}{4}} + \frac{3}{4} = 1$$

$$\tan \theta = \frac{y}{x} = \sqrt{3}$$

$$x < 0 \text{ and } y < 0 \text{ so } \theta = \pi + \frac{\pi}{3} (2\pi)$$

Solutions of the equation $\cos x = \cos \alpha$

 α and $-\alpha$ have same abscissa so,

$$\cos \alpha = \cos(-\alpha)$$

The equation:

 $\cos x = \cos \alpha$ has 2 solutions:

$$x = \alpha + 2k\pi$$

$$x = -\alpha + 2k\pi$$

Solutions of the equation cos x = a

Case 1: if
$$a > 1$$
 or $a < -1$

The equation has no solution since $-1 \le \cos x \le 1$

Example:

$$\cos x = 2$$
 ; $\cos x = -2$

Case 2: if
$$-1 \le a \le 1$$

The equation has infinity of solutions which have the form:

$$x = \alpha + 2k\pi$$
 or $x = -\alpha + 2k\pi$ where $k \in \mathbb{Z}$ & $\alpha \in [0; \pi]$

Example:

$$\cos x = \frac{1}{2}$$

$$\cos x = \cos \frac{\pi}{3}$$

$$x = \frac{\pi}{3} + 2k\pi \quad \text{or} \quad x = -\frac{\pi}{3} + 2k\pi$$

Solutions of the equation $sin x = sin \alpha$

 α and $\pi - \alpha$ have same ordinates so,

$$\sin \alpha = \sin(\pi - \alpha)$$

The equation:

 $\sin x = \sin \alpha$ has 2 solutions:

$$x = \alpha + 2k\pi$$

or

$$x = \pi - \alpha + 2k\pi$$

Solutions of the equation $\sin x = a$

Case 1: if
$$a > 1$$
 or $a < -1$

The equation has no solution since $-1 \le \sin x \le 1$

Example:

$$\sin x = 2$$
 ; $\sin x = -2$

Case 2: if
$$-1 \le a \le 1$$

The equation has infinity of solutions which have the form:

$$x = \alpha + 2k\pi$$
 or $x = \pi - \alpha + 2k\pi$ where $k \in \mathbb{Z}$ & $\alpha \in [-\frac{\pi}{2}; \frac{\pi}{2}]$

Example:

$$\sin x = \frac{1}{2}$$

$$\sin x = \sin \frac{\pi}{6}$$

$$x = \frac{\pi}{6} + 2k\pi$$
 or $x = \pi - \frac{\pi}{6} + 2k\pi = \frac{5\pi}{6} + 2k\pi$

Solutions of the equation $tanx = tan\alpha$

 α and $\pi + \alpha$ are in the quadrants where the abscissa and the ordinate have same signs so,

 $\tan \alpha = \tan(\pi + \alpha)$

The equation: $\tan x = \tan \alpha$ has 2 solutions:

$$x = \alpha + 2k\pi$$

or

$$x = \pi + \alpha + 2k\pi$$

that can be reduced to the

form:
$$x = \alpha + k\pi$$

Solutions of the equation $\sin x = a$

The equation has for every real number α the set of solutions: $x = \alpha + k\pi$

Where $k \in \mathbb{Z}$ & $\alpha \in]-\frac{\pi}{2};\frac{\pi}{2}[$

Example:

$$\tan x = -\sqrt{3}$$

$$\tan x = \tan\left(-\frac{\pi}{3}\right)$$

$$x = -\frac{\pi}{3} + k\pi \quad ; \quad k \in \mathbb{Z}$$

Be Smart ACADEMY

Solve
$$2\cos^2 x + \sin x - 2 = 0$$

$$\cos^2 x = 1 - \sin^2 x$$

$$2(1 - \sin^2 x) + \sin x - 2 = 0$$

$$2 - 2\sin^2 x + \sin x - 2 = 0$$

$$-2\sin^2 x + \sin x = 0$$

$$\sin x \left(-2\sin x + 1\right) = 0$$

$$\sin x = 0$$

$$\sin x = \frac{1}{2}$$

$$x = \frac{\pi}{2} + 2k\pi$$

$$x = \frac{\pi}{6} + 2k\pi$$
 or $x = \frac{5\pi}{6} + 2k\pi$

ACADEMY